

Atlassian Confluence features the LivingDoc plugin. LivingDoc
works by executing a Confluence page which calls custom written
Fixtures. A Fixture is a bridge between the Confluence page and
the System Under Test (SUT) and is written in Java. Whenever a
page in Confluence is executed, the Remote Agent receives the
pages in HTML format, which are then processed by LivingDoc.
The methods of the Fixture are called with the appropriate para-
meters, which in turn executes a piece of business logic in the
SUT software system, and passes the results back to the Conflu-
ence page. There it is visually indicated if a test has passed or not.

 Creating Executable Specifications

Context Definition (Setup)
Context Definition is used to simplify the creation of a particular
state for the System Under Test.

The first row of the table indicates the name of the interpreter
and the name of the desired state. The second row is called hea-
der row and serves to identify the data to be inserted in the Sys-
tem Under Test. Finally, the remaining rows contains the data to
be inserted.

Rule Validation (Rule for)
Rule Validation is used to express concrete and measurable busi-
ness rules. It compares the values returned by the System Under
Test against the expected values defined by the Business Expert.

The first row of the table indicates the set of rules. The next row
is called the header row and serves to distinguish the given values
and the expected values. Given values serve as inputs to the sys-
tem, whereas expected values serve as comparison values against
values that are actually returned by the system. When a column
header ends with special character ? or (), it denotes an expected
value. Finally, the remaining rows capture the examples. They are
the executable test rows.

Specific Keywords
For the table rule validation you can use two keywords for special
cases.These keywords are placed instead of an expected value.

FACTSheet

LivingDoc - Your Open Source Testing Collaboration Solution
LivingDoc is a powerful Open Source tool that supports the implementation of collaboration driven methods like Behavior Driven Deve-
lopment or Specification By Example. Due to its smart integration into Atlassian Confluence it is one of the best tools to evolve a living
documentation system, especially if you are already using Atlassian Confluence as your Knowledge Management System. This feature
is what sets LivingDoc apart from its competitors. Some of those, while very developer friendly, are not really accepted by experts, like
Business Analysts, Experts or Testers, without a strong technical background. Even the reporting features provided by those competitor
tools or their extensions/plugins do not measure up to LivingDoc.

 Overview LivingDoc

Empty Cells
When a test cell is left blank,
LivingDoc only shows the returned value.

Error
When you expect an error, specify it in the
cell to test for that particular behavior.

List Validation (List of, Set of, Superset of, Subset of)
List Validations are used to express any kind of groups, lists or
sets of values to be compared with the System Under Test. The
test result depends on the specific collection selected.

As for all other interpreters, the first row of the collection inter-
preters specifies the name of the interpreter and the name of the
collection to be tested. The next row is used to define the name
of each attribute related to the members of the collection of data.
The following rows are used to specify the set of values to test.

Workflow Validation (Do with / Scenario)
Workflow Validation is used to express interactions with the Sys-
tem Under Test which must be performed in a particular order.
This form of specification provides information about the busi-
ness flow.

As for all other interpreters, the first row of the DoWithInterpre-
ter specifies the name of the interpreter and the name of the
sequence of actions to be tested. What makes the DoWithInter-
preter special is that it only has to be defined once for all the se-
quences of actions expressed in a page. Obviously, the DoWithIn-
terpreter must be defined before any sequence of actions. The
following rows are used to express specific actions. The form of
each row of a DoWithInterpreter must respect the following rules:

•	 a row must begin with a part of the action description,
•	 each parameter must be isolated in a cell,
•	 each parameter must be separated by parts of the
	 action description.

An action description can be left blank in order to separate two
parameters. The DoWithInterpreter provides a minimum of key-
words used to define a specific action. The DoWithInterpreter may
also be expressed in Bullet List form or Number List form.

Specific Keywords
LivingDoc offers a list of keywords to support the Business Expert.
Those keywords are placed at the beginning of an action row.

The LivingDoc Confluence plugin places different utility macros
at your disposal.

Accept
Confirm that the action has been executed
by the System Under Test.

Check
Verify the specified expected value with the value
returned by System Under Test.

Reject
The action should not be performed by the
System Under Test (expected errors).

Display
Print the value returned by the System
Under Test.

Name and Syntax Description

Children Macro
{livingdoc-children}

Can execute a batch of pages
resulting from a page hierarchy.

Historic Macro
{livingdoc-historic}

Creates a chart image of the latest
historic data of a page execution.The
image created provides a clickable
area to display the specific execution
result.

Import Macro
{livingdoc-import: ... }

Allows you to import classes into your
executable page without polluting it
with undesirable and not meaningful
user tables.

Include Macro
{livingdoc-include}

Allows you to include pages content
into executable document allowing for
example, to define a setup and a tear
down page and include it in executable
pages avoiding duplication.

Info Macro
{livingdoc-info}

Allows you to create tables and/or
bullet lists that you do not want to be
processed as executable specifications
within your executable documents.

Labels Macro
{livingdoc-labels}

Can execute a batch of documents
resulting from a label search.

Generally, Fixtures are glue-codes that connect the functions or
methods you want to test and the executable table inside Con-
fluence. For this introduction, we implement functional code
instead of calling functions or methods.
You need to open up a Confluence Space, which you have regis-
tered as a LivingDoc Space beforehand and create a new page.
Now you can start writing your executable specification. To do
this, create a new table with at least 3 columns and 3 rows. Since
it is a simple example code, a „rule for“ interpreter will suffice.
Write it down into the first cell. Next to it type in the name of your
Fixture. Your first executable specification can look like this:

It is necessary to add livingdoc-core JAR to the pom.xml of your
project. By doing this you can use LivingDoc - Classes.

You may have noticed the parameters next to the Annotation Fix-
tureClass and Alias. They are aliases and are directly mapped to
the classname.

By enabling LivingDoc enabled check box your Confluence page
will be activated as a LivingDoc page and the Execute button will
be visible.

	

After a page is executed you will immediately get result reports
for it. Following report is a bad case example:

Your Jenkins records all result statictics after every build. These
statictics are visualized in a chart. LivingDoc can be integrated
in your Continuous Integration process.

 <groupId>info.novatec.testit</groupId>
 <artifactId>livingdoc-core</artifactId>
 <version>${version}</version>

import info.novatec.testit.livingdoc.reflect.
annotation.Alias;

import info.novatec.testit.livingdoc.reflect.
annotation.FixtureClass;

@FixtureClass(„HelloWorld“)
public class HelloWorldFixture {

 @Alias(„first word“)
 public String first;

 @Alias(„second word“)
 public String second;

 @Alias(„concatenate two words“)
 public String concatenateWords(){
 return first + second;
 }
}

 Specification execution via Confluence

 Reports in Confluence

 Writing Fixtures

 Macros for Confluence Pages
rule for hello world

first word second word concatenate words?

hello World helloWorld

living Doc livingDoc

 Reports in Jenkins

NovaTec Consulting GmbH
Dieselstraße 18/1
D-70771 Leinfelden-Echterdingen
www.novatec-gmbh.de

Anis Ben Hamidene
Senior Managing Consultant
NovaTec Consulting GmbH
Head Of Competence Area Agile Quality Engineering

Phone: 	 +49 711 22040-700
Mobile: 	+49 170 7998 715
Mail:	 anis.benhamidene@novatec-gmbh.de

LivingDoc is created and developed by

NovaTec Consulting GmbH is an owner-operated, independent German IT consulting firm founded in 1996
supporting customers across various industries in the successful implementation of IT-related projects.

Get in contact with us!

All pictures, brands and texts are protected by copyright regulations.
Their use may be permitted exclusively and only through permission
of the author. Version 1.0 (April 2016)

Twitter
@NT_AQE

Website
www.novatec-gmbh.de/ld

Blog
www.novatec-gmbh.de/aqe-blog

YouTube
www.novatec-gmbh.de/ld-youtube

GitHub
www.novatec-gmbh.de/ld-github

LivingDoc Documentation
ww.novatec-gmbh.de/ld-doc

Trainings
LivingDoc: www.novatec-gmbh.de/ld-training
Specification By Example: www.novatec-gmbh.de/sbe-training

